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Abstract—Mobile phishing attacks, such as mimic mobile browser pages, masquerade as legitimate applications by leveraging

repackaging or clone techniques, have caused varied yet significant security concerns. Consequently, detection techniques have been

receiving increasing attention. However, many such detection methods are not well tested and may therefore still be vulnerable to new

types of phishing attacks. In this article, we propose a new attacking technique, named GUI-Squatting attack, which can generate

phishing apps (phapps) automatically and effectively on the Android platform. Our method adopts image processing and deep learning

algorithms, to enable powerful and large-scale attacks. We observe that a successful phishing attack requires two conditions, page

confusion and logic deception during attacks synthesis. We directly optimize these two conditions to create a practical attack. Our

experimental results reveal that existing phishing defenses are less effective against such emergent attacks and may, therefore,

stimulate more efficient detection techniques. To further demonstrate that our generated phapps can not only bypass existing

detection techniques, but also deceive real users, we conduct a human study and successfully steal users’ login information. The

human study also shows that different response messages (e.g., “Crash” and “Server failed”) after pressing the login button mislead

users to regard our phapps as functionality problems instead of security threats. Extensive experiments reveal that such newly

proposed attacks still remain mostly undetected, and are worth further exploration.

Index Terms—Android phishing apps, android GUI attacks, android apps
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1 INTRODUCTION

DUE to the portability and convenience of mobile devices,
mobile apps have surpassed traditional desktop appli-

cations, as the primary way of accessing the Internet. Many
users heavily depend on their smartphones for daily tasks,
such as shopping, payments, and chatting through mobile
apps. This kind of popularity has attracted great attention
from attackers with a growing number of malicious apps
over the past few years. Among these malicious apps,
phishing is the most popular and widely used strategy [58]
involving the act of harvesting user names, passwords, and
other sensitive information from a user. This identity theft
poses a security threat for all mobile apps; however, the
consequences are particularly severe for financial and social
apps. It is reported that mobile phishing apps lead to the
loss of billion dollars every year [1].

In traditional phishing attacks, attackers send SMS or
emails containing malicious links to redirect the browser to
external phishing web pages or inducing download activi-
ties to install malicious applications on users’ devices [17].
Moreover, phishing attacks are not necessarily sent in bulks

but can be highly targeted, such as credential spearphish-
ing [39] and whaling attacks [40]. The effectiveness of such
phishing methods have been reduced due to the increased
public awareness of risk and a plethora of research about
automatically detecting phishing web pages [73]. So attack-
ers sought to propose more sophisticated methods, such as
embedding attacks directly inside the apps. In particular,
attacking the graphical user interface (GUI). For example,
attackers will build a phishing app to masquerade as the
original one by repackaging or cloning the original one to
steal the private information entered in the login pages [15].
There are two challenges to perform this attack successfully.
First, these methods require substantial effort and strong
domain knowledge to carry out static program analysis to
understand and mimic the logic of the original apps. More-
over, for cloning apps, the difficulty is increased when the
UI pages in the original apps have dynamic loading areas
which are not determined by the UI resources [21]. Second,
the original apps may not be able to be replicated due to the
development of app protection techniques (e.g., app pack-
ing [2] and code obfuscation [29]). In addition, the state-of-
the-art defenses (e.g., fuzz hashing technique [78] and cen-
troid-based approach [20]) can detect repackaging and clon-
ing phishing attacks successfully and effectively. Hijacking
existing original apps (e.g., window overlay and task hijack-
ing) could also be detected and mitigated by state-of-the-art
detection techniques [15], [35], [59], [60].

A Squatting attack [10] is a form of denial-of-service
(DoS) attack where a program interferes with another pro-
gram through the use of shared synchronization objects.
There exist several attack derivatives for different scenarios,
such as typo-squatting attack, skill-squatting attack, and
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voice-squatting attack. In this paper, we propose “GUI-
Squatting Attack”, a new approach to automatically generate
phishing apps effectively, within a few seconds, resulting in
a powerful new attack for the real world. The generated
phishing apps (called phapps in this paper) have very similar
login-related UI pages corresponding to the original apps.
Additionally, phapps have been encoded with deception
code which can steal sensitive information secretly. We
observe from the existing phishing techniques (e.g., repack-
aging and cloning phishing attacks, and zero-day phishing
attacks [45]) that a successful phishing attack requires two
conditions: page confusion and logic deception1 (i.e., deceiving
users with high similarity UI pages and stealing their infor-
mation with deceptive UI responses after clicking the
“login” button). Our GUI-Squatting attack optimizes these
two conditions by leveraging image processing and deep
learning methods, making a powerful attack, which can eas-
ily bypass state-of-the-art detection techniques.

To illustrate our phishing attack threat model, we follow
the assumption made by [21], [60], we assume that Alice
downloads a generated phishing banking app from an unre-
liable app market on her new smartphone. Installing the
app does not raise any concerns of Alice as it only requires
the permission to access the Internet. Launching the app
does not raise any concerns either as the phishing app has a
high similarity with the original app’s UI pages. Alice clicks
the “login” button after entering her personal banking cre-
dentials, and a dialog pops up, reminding Alice that the cur-
rent banking app is out of date, and needs to be updated to
the latest version. In parallel, her credentials have been
recorded and transmitted to a remote server owned by the
malicious app author. When Alice clicks “Update Now”,
Google Play is launched and redirected to the download
page of the corresponding original app. Alice continues to
use the original app without noticing that her sensitive
information has already been stolen. Similar malicious apps
by repackaging or cloning have been previously discov-
ered [15], [21].

Motivated by the scenario above, we implement a new
approach to automatically and effectively generating a new
phishing app within a few seconds. Given only the login
page(s) of an app, with no other requirements, we first
extract all GUI components by adopting image processing
techniques, next we obtain the component types through
image classification. According to these identified compo-
nents and their attributes in the original page, we generate
the corresponding GUI code. Finally, we add deception
code for the interactive GUI components to collect users’
information and return a certain response to resolve the
users’ doubts about the phishing app. To increase the
authenticity under real-world scenarios, we collected 10
types of responses following the “login” button from 50 real
apps, to have our generated phapps randomly return one of
these real responses.

Our approach is able to conduct a new powerful phish-
ing attack in the real word due to the following three

characteristics: (1) It is difficult for the generated app to be
spotted as a phishing one. The generated login-related page
(s) are very similar to those of the original app, with subse-
quent responses sourced from the original apps, mobile
users cannot distinguish between the phapp and the origi-
nal app (Section 5). In addition, the generated apps require
very few permissions (only Internet access), and is therefore
undetected by both users and existing malware detection
techniques. (2) The generation process is fully automated
without a need for humans to understand the complicated
deception code of the app. Therefore, the attackers can eas-
ily generate a large number of phishing apps in a short
amount of time (each new app takes 3 seconds on average)
to launch large-scale attacks. (3) The generation method is
platform-independent. Although the current implementa-
tion is based on the Android platform, it can be extended to
other mobile platforms like iOS as long as we can collect
data from those platforms. In addition, according to the
recent news headlines [9], phishing attackers have started
leveraging GDPR [5] as a themed (bait) in an attempt to steal
users’ information. Users usually receive scam emails with
malicious links, showing that they should update their apps
to comply with a new Privacy Policy, which reflects changes
introduced by GDPR. Such hotspot can be used as an actual
bait to make GUI-Squatting attacks possible in the real
world. Android malware can be spread through a variety of
techniques [37], [78], they can all be used to propagate and
push the phapps to the users’ mobile devices, which is out
of scope of our research in this paper.

The experiments show that our method can accurately
segment and classify most GUI components (83.2 percent
accuracy) in the UI screenshot, and the generated login
pages are on average 96 percent similar to the original page
in a pixel comparison.2 We then further demonstrate that
the generated apps cannot only bypass existing malware or
phishing app detection methods, but can also successfully
capture mobile users’ credentials without alerting users of
the human study. The human study involved 20 real partici-
pants and 100 apps (50 original apps and 50 generated
phapps). This study demonstrates that the different
response messages, such as “Crash” or “Server failed” after
pressing the “login” button, make users incorrectly regard
the phapp as a functionality problem instead of a security
threat. Our study also reveals insights that users care more
about the security of financial apps than social ones, and
that gender or profession does not result in much difference
to the experimental results.

In summary, this papermakes the following contributions:

� We introduce a new approach for automated mobile
phishing app (phapp) generation, which can be used
on different mobile platforms, such as Android and
iOS. The costless method enables a new powerful
and large-scale attack (“GUI-Squatting Attack”) to dif-
ferent apps in a short time (2.51 seconds for each app
on average).

1. In this paper, logic deception refers to reasonable app responses
(i.e., deception code) when clicking interactive components in login-
related pages. Since our goal is to steal users’ credentials, we do not
attempt to generate the actual logic/back-end code that is similar to the
original apps.

2. More results about the extracted components and the similarity
comparison can be found on https://sites.google.com/view/gui-
squattingattack/
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� Our generated phishing apps can bypass the state-of-
the-art anti-phishing techniques (e.g., DROIDEA-

GLE [66] and WINDOWGUARD [59]). Meanwhile, mal-
ware detection (e.g., DREBIN) and anti-virus
techniques (e.g., VirusTotal) are weak in identifying
phapps.

� Our comprehensive experiments and human study
also show the effectiveness and practicality of our
generated phishing apps which successfully steal
users’ information imperceptibly in the real world.
The analysis of users’ feedback is also valuable to
future research.

At a high level of this work, our experimental results
reveal that phishing defenses should effectively respond to
such newly proposed attacks. Our approach can aid the pro-
cess to further understanding and to explore the characteris-
tics of new mobile phishing apps.

2 MOBILE PHISHING ATTACK

In this section, we introduce the Android GUI framework
and potential security threats arising due to consistent UI
design principles. Additionally, we briefly introduce the
types of mobile phishing attacks that have been exhibited.

2.1 Android GUI Framework

The Android GUI framework is famous for multi-interac-
tive activities. The GUI is what the user can see and interact
with. The Android GUI provides a variety of pre-built com-
ponents, such as structured layout objects (e.g., LinearLay-
out) and components (e.g., Button and EditText). These
elements allow developers to build the graphical user inter-
faces for the app. The layout structure uses a GUI-hierarchy
to follow UI design principles.

The Android GUI framework is a reusable and extensible
set of components with well-defined interfaces that can be
specialized. However, the security of Android GUI frame-
work remains an important yet under-scrutinized topic.
The Android GUI framework does not fully consider secu-
rity issues. For example, a weaker form of GUI confidential-
ity can be breached in the form of GUI state by a
background app without requiring any permissions. The
design of the GUI framework can potentially reveal each
GUI state change through a newly-discovered public side
channel – shared memory, giving a chance for attackers to
steal sensitive user input [21]. The UI pages of Android
apps are usually rendered by static XML files, which
reduces the attack costs to control every pixel of the screen.
If the attackers can extract the GUI components and their
attributes, they can generate the corresponding GUI code
smoothly.

Furthermore, when a user is interacting with the target
GUI component like clicking or through voice controlling, it
can actually trigger some other actions in the background
such as tapjacking attack [61], which was not intended by
the user. In fact, the Android platform has been plagued by
various GUI attacks in recent years, such as phishing
attacks, task hijacking [60], and the full screen attack [15].
Malware on the device that takes screenshots also breaches
GUI confidentiality [46].

2.2 Existing Mobile Phishing Attacks

Phishing, as a type of social engineering attack [15], [58], is
often used to steal user information, such as login creden-
tials. It occurs when an attacker masquerades as a trusted
entity (resembling the original web page or application) [43].
Web phishing attacks date back to 1995 [57], but recently,
attackers have shifted their attention to mobile devices [37].
Due to the small screen size and lack of identity indicators
of URLs seen next to online web sites, mobile users have
become more vulnerable to phishing attacks. On mobile
devices, 81 percent of phishing attacks are carried out using
phishing apps, SMS, or web pages [71]. Mobile oriented
phishing attacks are classified into two strategies: (1) mas-
querade as original apps; or (2) hijack existing original
apps. Mobile phishing attacks can be classified into three
types based on the above two strategies.

� Similarity attacks (spoofing attacks) analyze the GUI
code of the original app and partially modify the
GUI code. Attackers then add logic code to manipu-
late the original app logic [66]. For example, attack-
ers can crack payment apps to bypass the payment
functionality.

� Window overlay attacks render a window on top of
mobile screen, either partially (e.g., Toast and Dia-
log) or completely (e.g., similar UI pages) overlap-
ping the original app window [15], [21], [61]. For
example, attackers choose a particular time to render
the phishing UI pages by monitoring the occurrence
of the original app’s login activity. This attack usu-
ally leverages the flaws of design mechanism in
mobile OS (e.g., using ActivityManager#getRun-
ningTasks() to get “topActivity” before Android 5.1).

� Task hijacking attacks trick the system into modifying
the app navigation behaviors or the tasks (back
stacks) in the system [35], [60]. For example, The back
button is popular with users because it allows users
to navigate back through the history of activities.
However, attackers may abuse the back button to
mislead the user into a phishing activity (e.g., misus-
ing “taskAffinity”). In short, attackers try to modify
the tasks and back stack to execute phishing attacks.

2.3 Newly-Proposed Attack: GUI-Squatting Attack

We follow the assumption summarized by the existing
mobile phishing attack techniques: a successful phishing
app requires two conditions: page confusion and logic decep-
tion. In this paper, we propose a new powerful and large-
scale attack (called “GUI-Squatting Attack”) based on fully
automated generation of phishing UI pages and apps.
Moreover, our approach can generate similar UI pages for
the phishing attacks mentioned above.

The following differences make the GUI-Squatting attack
more threatening than previous attacks. (1) Only the login
page(s) of an app is required and no other inputs are neces-
sary, making a large-scale attack possible, regardless of plat-
form limitations. (2) No requirements of domain knowledge
and traditional attack techniques (e.g., repackaging and
clone techniques) make the result harder to detect. (3) It can
conduct a wide range of attacks due to the low cost of the
generation process, and it can launch targeted attacks like
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credential spearphishing attacks [39]. Our generated phish-
ing apps can successfully control every pixel of the screen
and capture real users’ credentials without raising the user’s
attention under practical GUI-Squatting attacks in the real
world. We detail the new strategy in Section 3.

3 OUR APPROACH

In this section, we first propose our threat model, and then
introduce our new approach with three phases to automati-
cally generate mobile phishing apps and UI pages.

3.1 Threat Model

We follow the assumption made in [60] that our generated
phishing apps have been installed on the users’ mobile devi-
ces. There aremany propagation techniques capable of push-
ing malicious apps to user devices [37], which we consider
beyond the scope of this paper. The generated apps only
need the “INTERNET” permission, frequently requested by
Android apps. Due to the high similarity between the origi-
nal UI pages and the ones in our phapp, the app that the user
does not realize is a phishing replica. The credentials will be
collected and transmitted to a remote server after the user
enters personal credentials and clicks the “login” button. At
the same time, a response is shown (e.g., “update required”
dialog, crash dialog, no response) to create a diversion so
that the user does not suspect that their sensitive information
has been stolen.

3.2 Approach Overview

The goal of our approach is to take in the login-related
screenshots of a mobile app lui, the icon of a mobile app
icon, and output a phapp that can collect user credentials.
In order to generate phapps that are able to deceive users
and successfully steal users’ sensitive information imper-
ceptibly, our approach needs to address two challenges: �1
To enable page confusion, the generated login-related UI
pages should have a high similarity with the original ones. �2
To enable logic deception, deception responses need to
be provided, especially for interactive components, includ-
ing the functionality of interacting with other UI pages,
hence corresponding deception code needs to be generated
automatically.

To meet these conditions and successfully generate
mobile phishing apps, we propose our approach to fully
automate phishing app generation in Fig. 1. Our approach
has three phases: (1) we extract the GUI components from
the target UI screenshots by segmenting the components
with image processing techniques (i.e., canny edge detection

and edge dilation), and classify the types of GUI components
with a deep learning algorithm (i.e., CNN); (2) we then
assemble these components in assistance with the layout
code snippet of each component along with their attributes,
to generate layout code (i.e., XML file) for the imitation login
page that is still highly similar to the original; (3) we further
generate the deception code and assign responses for interac-
tive components (ICs), such as ImageButton and EditText.
The generated phishing apps can secretly collect users’ cre-
dentials without causing users’ awareness through these
responsemessages.

3.3 Interactive Components Extraction (Phase 1)

The extraction of interactive GUI components involves two
steps: component segmentation and component classification.

GUI Component Segmentation. To segment the compo-
nents from UI screenshots, we first detect the edges of all
components in the screenshot through canny edge detec-
tion [3] which infers the edges by suppressing intensity gra-
dients of the image. But the detected edges are too coarse to
be used directly because this technique also detects the
exact edges of each character and letter, which does not rep-
resent a full UI component. For example, the letters of
“Password” in Fig. 2b are isolated from each other. Thus we
merge adjacent elements by edge dilation [4], which gradu-
ally enlarges the boundaries of regions so that the holes
within the regions become smaller or entirely disappear. As
shown in Fig. 2c, the EditText with its hint texts and the
background image have merged together.

We observe that although some UI components may use
irregularly shaped elements, we opt to bound all components
as rectangles to make the component identification and code
generation process easier. Therefore we adopt contour detec-
tion to obtain the regions with an approximate rectangle
border. Fig. 2d shows our detected GUI components with
all components annotated with rectangular, blue bounding
boxes. We crop these regions from the screenshots as
images of the GUI components, and also record their coordi-
nates and sizes for later use in the classification and genera-
tion process.

GUI Component Classification. We then classify the
cropped images of these GUI components into different
types such as Button and EditText. To carry out the GUI
component classification, we adopt a Convolutional Neural
Network (CNN), a state-of-the-art approach often used in
computer vision applications.

The model takes as input the cropped images of GUI
components and outputs an N dimensional vector where
N is the number of classes that the program has to
choose from. As we are only concerned about the

Fig. 1. Workflow of our approach (ICs is short for interactive
components).

Fig. 2. Process of GUI component extraction.
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interactive GUI components which need extra GUI code
in the login page and deception code, we consider the
components of EditText, Button, ImageButton, TextView,
and CheckBox. Note that Some TextViews contain click-
able links and will be discussed later in Section 3.4.
Other components, such as ImageView and Spinner, are
put into one type called “Others.” Thus, N ¼ 6 and our
model is to classify a cropped component as one of these
6 types. Note that the output of the fully connected layer
will be the probability of these 6 classes, where the sum
of probabilities is 1.

3.4 GUI Code Generation (Phase 2)

In the second phase, we generate a GUI code snippet of the
corresponding component based on the classified types of
components, and embed their attributes collected from the
component images, as shown in Fig. 3.

After obtaining a list of interactive GUI components, we
generate the phapp following Algorithm 1. The inputs to
our algorithm include lui as a list of UI screenshots of the
Android app’s login pages and icon as the icon of the
Android app. Note that one app may have several login UI
pages. For example, it may require users to fill in the user
name on the first page, and then fill in password in the next
page. So we set the number of login UI pages as N (N � 1).
We first obtain the list of GUI interactive components
ordered from top to bottom, and from left to right on the
original screenshot as ICs.

For each UI page, we separately generate GUI code
and deception code since GUI code is usually maintained
in an XML layout file, and the back-end code is usually
maintained in one or more Java files. Apart from several
interactive components for which we need to generate
extra interaction code, most parts of the page do not need
any change. Thus we put the original login UI screen(s)
as the background canvas and add interactive compo-
nents later. Specifically, for each UI page, we first initial-
ize GUI code codegui as the code generated from the
screenshot and leave deception code codedeception½i� (i
refers to the ith lui) empty (line 8) as the background can-
vas does not involve any deception code in apps. We
then obtain attributes for each interactive component
extracted from phase 1. For each component, we collect
its cropped image, detailed coordinates with getAttr()

in line 10. However, among the five interactive compo-
nents, there is one special type, EditText. Apart from
basic attributes, it may also contain text hints (reminder
messages like “Email”, “Password” as shown in Fig. 2) or
drawable images (e.g., an email representation image or a
password visibility toggle). Therefore, we check the exis-
tence of such hints and obtain their text by leveraging
optical character recognition (OCR) techniques [8], and
also extract drawable images from inside the EditText.
Since EditText may also own a particular background
color (e.g., white, blue), we take the most frequent pixel
value to fill in the area of EditText. Fig. 3 shows the gen-
erated GUI code of one of these EditText components
with detailed attributes.

The other special type of interactive component is Text-
View, many of which just display text without any interac-
tion. However, some TextViews are special with clickable
links, for example, an interactive TextView is used to assist
a user in password recovery (i.e., “FORGOT PASSWORD?”
as seen in Fig. 3). Therefore, to preserve this functionality,
we also retrieve the text attributes of TextView through
OCR, and treat them as an interactive component in the
login-related pages if the text contains words that are
matched with those in a keyword set (e.g., “sign up”,
“forget password” or related alias) with function isInterac-
tive() in line 11. Otherwise, we ignore it both in GUI code
and deception code (line 12).

Algorithm 1. Phapp Generation

Input: lui: a list of login-related UI pages
icon: icon of the Android app

Output: app: generated Android phishing app (phapp)
// GUI Code Generation
1: N  number of lui
2: i 0
3: codegui ?

4: codedeception ?

5: ICs getInteractiveComponents(lui)
6: while i < N do
7: codegui[i] generateComponentUI(lui)
8: codedeception[i] “ ”
9: foreach ic 2 ICs½i� do
10: icattr getAttr(ic)
11: if ic == TextView and!isInteractive(ic) then
12: continue
13: codegui[i] += generateComponentUI(icattr)

// Deception Code Generation
14: codedeception[i] += generateComponentListener(icattr)
15: i = i + 1
16: phapp generateApp(codegui, codedeception, icon)
17: return phapp

We generate GUI code for every interactive component
according to its attributes, and add the code into the
overall linear layout of the GUI code file (line 13). For
Button, ImageButton, and interactive TextView, we gener-
ate GUI code by utilizing ImageButton, i.e., cropped com-
ponent images which can be clicked. For EditText, we
obtain its GUI code by also considering any of its text
hints, drawable images and background color (shown
in Fig. 2).

Fig. 3. GUI code snippet of layout.xml file generated by our approach for
phapp.
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3.5 Deception Code Generation (Phase 3)

In the third phase, we generate the corresponding deception
code snippets based on different types of components in the
layout file, as well as different event listeners. We allocate
different types of responses collected from real apps to the
“Login” buttons. Meanwhile, we implement SSL/TLS
authentication and user identity verification via HTTPS con-
nection for each phapp to prevent being detected by traffic
analysis tools. Additionally, to prevent being detected by
control- or data-flow analysis, we create some widely-used
activity transition relations for each phapp.

After generating the GUI code codegui for login images,
we then generate the corresponding deception code
codedeception (line 14). Specifically, we set up listeners for dif-
ferent interactive components. Since our goal is to automati-
cally generate phishing apps that can steal user credentials
imperceptibly instead of cloning apps, we focus on generat-
ing the deception code of login-related pages of the original
apps, and attempt to deceive users by displaying the highly
similar login pages and showing plausible responses when
clicking the “Login” button. According to our observation
of login-related pages, we summarize two kinds of decep-
tion code that need to be generated based on different inter-
active components.

Interactive Components that are Directly Related to Basic
Login Logic. (i.e., EditText for inputs and Button for submis-
sion). As users can enter their information including their
user names and passwords in EditText, we add listeners to
each EditText to collect users’ credentials. For “login” but-
tons, we regard it as ImageButton in the GUI code, and add
a listener (i.e., View#OnClickListener) to it. Once the sub-
mission component is clicked, the listeners for EditText will
check whether there is content inside. If not, there will be a
pop-up message reminding the user to“please fill in the
account and password.” Otherwise, the data collection pro-
gram will be triggered, and the credentials are transmitted
to a remote server via the “getText()” method.

Interactive Components that are Associated with other Func-
tionalities or other UI Pages. As shown in Table 1, based on
our observations of real apps, we summarize and demon-
strate five kinds of interactive components that are most
widely used. These interactive components may appear in
the login-related pages; however, they are not directly asso-
ciated with the login logic. For Checkboxes outside EditText,
we use SharedPreference#getSharedPreferences to save the
inputs of EditText to determine whether the Checkbox has
been chosen or not. In addition, we use EditText#setTrans-
formationMethod to control the plain-text display of the
password in some cases. The implementation of a Switch is

similar to Checkbox outside EditText. For ImageButton of
third-party logins (e.g., Facebook and Twitter), the creden-
tials are used via the interfaces from the corresponding par-
ties, which are out of scope of our research in this paper
though it could be possible to generate a phapp for the
standardized Facebook or Google login page. Besides, the
ImageButton of “Sign up” and interactive TextView of
“Forgot password” will indicate that the current user does
not have valid credentials; they are users who are not our
phishing target, and thus it is meaningless to steal creden-
tials from them. We therefore allocate the same response as
clicking the “login” button to make them interactive. Note
that, for ImageButton, Button, and interactive TextView, we
treat them all as ImageButton in the GUI code, and add lis-
teners for all of them.

We collected and identified 10 different types of responses
for the “login” button. Among 37,251 Android apps auto-
matically explored in Section 4.1, we randomly sample 50 of
them which could not be logged in for a manual check. We
check the screenshots of these apps after clicking the “login”
button, and summarize the ten responses in Table 2. We find
that 60 percent of the apps return “Invalid inputs”, i.e.,
wrong user name or password. Other unsuccessful login
pages include “Crash”, “Server failed” (no connection to the
remote server), “App update”, “Network unavailable” (no
connection to Internet), “Keep loading” (showing the prog-
ress bar), “Slow response” (delay of the app), “Google ser-
vice update”, “Force exit” (exit without notification), and
“No response” (no feedback after the action). When generat-
ing the phishing apps, we randomly select one of these
responses to camouflage our app as an original with func-
tionality problems as shown in Fig. 4.

TABLE 1
Interactive Components not Directly Associated With the Login Logic

TABLE 2
Response Types Extracted From Real Apps

Types of Response Description #

Invalid inputs Wrong user name or password 30
Crash Unfortunately, the app has stopped 6
Server failed Can not connect with remote server 4
Update app Update the latest version from

market
2

Update Google
service

Update Google service from market 2

Network
unavailable

Check your network connection 2

Keep loading Keep showing the loading status 2
Slow response Simulate system delay 2
Force exit Exit app directly 1
No response No feedback after the action 1
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Listing 1. Simplified Code Snippet of Server Authentica-
tion in Phapps

1 // Phapp server authentication

2 X509TrustManager trustManager = new

X509TrustManager(){

3 // Certificate verification

4 public void checkServerTrusted(...){

5 for (X509Certificate cert : chain){

6 // Is it expired

7 cert.checkValidity();

8 // Certificate public key string

9 cert.verify(ca.getPublicKey());

10 }}}

11 // Hostname verification

12 final HostnameVerifier hostnameVerifier=

new HostnameVerifier(){

13 public boolean verify(...){

14 if(URL.equals(hostname)){

15 return true;

16 }};

With the help of Socket or HTTP/HTTPS connections,
our remote server (i.e., webpage) will receive users’ creden-
tials after users enter their information and click the submit
or login button. Such one-way communication may be vul-
nerable to detection through traffic analysis, which tracks
network traffic from the client to the server by using a sim-
ple pattern-based approach. To avoid being detected, we
implement server authentication and user identity verification
for each phapp. (1) We implement SSL/TLS authentication
(the core simplified code snippet is shown in Listing 1)
when the client side (i.e., phapp) sends network requests to
mimic the real communication between the client and
server sides. Specifically, we first generate the server certifi-
cate using keytool (i.e., keytool -genkey -alias phapp -validity
3560 -keystore phapp.keystore), which is later imported at the
server side. After that, we also use keytool to export public
key string of the server certificate, which is used to verify the
server certificate at the client side. Server authentication
contains two phases: server certificate verification (Lines 2-
10) and server hostname verification (Lines 12-16). �1 For the
verification of the server certificate, we use checkValidity() to
verify whether the certificate is expired or not, and use ver-
ify() (Line 9) and getPublicKey() to verify the public key string
of the server certificate. �2 For the verification of the server
hostname, we just verify the domain name address. More-
over, we dynamically compose the server URL (Line 14)
using separate strings to evade the black-list matching strat-
egy. (2) We implement user identity verification via HTTPS
for each phapp by returning an always-true result. Before
pushing different types of responses for the “login” button,
the server will check the validity of the token sent from the
phapp, and the client side also will parse the received token

no matter what data is sent from the client side (the core
simplified code snippet is shown in Listing 2). Note that, a
true result will be returned from the server side, indicating
that the user is valid. Then, the response will be pushed to
users, and the response about the functionality problem
will be displayed on the top of the screen to distract users so
that they do not regard the phapp as a phishing app.

Listing 2. Simplified Code Snippet of User Identity
Verification in Phapp

1 public void send(...) {

2 new Thread(new Runnable()) {

3 // Send the login data to server

4 Request req = new Request.Builder().url

(URL).post(login_data);

5 OkhttpClient client = new OkHttpClient();

6 // Check the login data and receive response

7 Response res = client.newCall(req).exectue

();

8 receivedDataParsing(res);

9 }}

Some control- or data-flow analysis methods [22], [54]
analyze the transitions between activities, it would raise sus-
picion if there is no transition between the login activity and
other activities in an app. To evade it, we create many tem-
plates of activities that are widely used to interact with the
login activity, such as register activity, main activity, and set-
ting activity. To set up the transitions between them, we
leverage the API StartActivity() provided by Android
system to enable the activity transition from activity A to
activity B. Such activity transitions help address the doubts
of flow-based analysis. In fact, the users would not observe
the existence of these activities since the app would encoun-
ter functional problems after users click the “Login” button.

In addition to event handler generation, we further bind
the GUI code and deception code via findViewById(), which
identifies the corresponding component from the layout file
(i.e., GUI code) and binds it with the deception code. To avoid
being detected by other anti-phishing techniques based on
screenshots, we prohibit our apps from having screenshots
taken by other third-party apps by setting the flag (Window-
Manager.LayoutParams.FLAG_SECURE = TRUE) on the
login page. With the app icon, and the generated GUI code,
deception code, we finally build the phapp (line 15).

4 IMPLEMENTATION

4.1 GUI Component Collection

Fig. 5 shows the training data collection process.We crawled
37,251 unique Android apps with the highest installation
numbers from Google Play Store. These apps belong to 30

Fig. 4. Response examples after clicking “login” buttons.
Fig. 5. Training data collection.
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categories, including finance (e.g., Bank of America), social
(e.g., Facebook), news (e.g., BBCNews), etc. Game apps have
been excluded due to lack of standard GUI components that
can be automatically extracted. We obtain billions of original
UI screenshots in assistance with dynamic Android testing
tools (e.g., UIAUTOMATOR [12] and STOAT [65]). These tools are
configuredwith the default setting and run onAndroid emu-
lators (Android 4.3) on Ubuntu 14.04. At the same time, we
use UIAUTOMATOR to extract component information (i.e.,
component types and coordinate positions) for the explored
app screens. We note that not every app was successfully
launched on the emulator due to version update warnings,
Google service update warnings, lack of third-party library
support, etc. Our goal of this large-scale component analysis
is to ensure we obtain multiple sets of screenshots and com-
ponents, rather than completely explore each app and obtain
all components in each screenshot. Although the layout
information from UIAUTOMATOR does not include all compo-
nents and may contain minor errors, it would not affect the
collection of our training set. Finally, the result data set con-
tains 1,842,580 unique screenshots based on pixel compari-
sons, which is by far the largest raw data set of UI
screenshots to our knowledge.

Since we only focus on login-related pages and generate
corresponding code for phapps, we extract login-related
screenshots or closely related login screenshots (e.g., related
with register, transfer, and submission) by (1) using key-
word filtering (i.e., login, sign, regist, transfer, submit), and
(2) ensuring the screenshots to contain the component types
of EditText, TextView, and Button. We finally obtain 4,420
login-related screenshots, from which we extract 57,209
labeled cropped GUI component images (6 types) shown in
Fig. 6. Note that since we only managed to collect 697
CheckBox components in the login-related screenshots, we
extend it with 14,676 CheckBox components from the other
unique screenshots we collected. We place other compo-
nents that appear infrequently into the “Others” category
(for 12,457 in total), including ToggleButton, RadioButton,
ImageView, etc., since we do not need to handle all compo-
nent types. This part differs from the state-of-the-art GUI
code generation tools [14], [19]. Meanwhile, we disregard
the components that do not appear in login-related pages,
such as Spinner, RatingBar, and SeekBar.

4.2 Approach Implementation

Our approach is implemented in Python 2 (3K+ Lines of
Code), and leverages several open source libraries (e.g.,
OPENCV, TESSERACT) to automatically generate phapps. Spe-
cifically, we use CV (i.e., OPENCV [7]) and OCR techniques
(i.e., TESSERACT [11]) to extract components and their attrib-
utes (e.g., coordination positions, width, height, color, texts)

from the screenshots of UI pages. Meanwhile, we use Tes-
seract#makebox to extract the coordinate of each letter.

To classify the types of segmented components within
the UI screenshots, we adopt the CNN model as discussed
in Section 3.3. Our model contains three convolutional
layers, three pooling layers, and two fully-connected layers.
Within the convolutional layer, we set the filter size as 3, the
stride as 1, and padding size as 1. The same setting also
applies to the pooling layer. For two fully-connected layers,
both have 128 neurons. We implement our network with
the Tensorflow framework written in Python. The model is
trained for roughly 2 hours on a CPU, RAM, and Nvidia
Tesla P40 GPU card (24G memory) over 10 epochs.

From the classified interactive components and their
attributes, we generate the login GUI code for the given UI
screenshot. For each component, we use two layout attrib-
utes (i.e., android:layout_marginLeft and android:layout_-
marginTop) to identify their coordinates. In addition to the
basic attribute settings, we also transfer attributes of the
component to corresponding layout code (e.g., android:text-
Color, android:inputType). After implementing the UI login
code, we implement 10 types of responses from Table 2
when interactive components are clicked, each component
has a different response attached within the deception code.
As for the response to login actions, we randomly choose
one response to be attached to the “login” button. Our
implementation runs on a 64-bit Ubuntu 16.04 machine
with 12 cores (3.50 GHz Intel CPU and 32 GB RAM.)

5 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evalu-
ate our approach in the following five aspects: (1) UI page
similarity comparison between the UI pages of the original
apps and our generated phapps; (2) UI page generation
comparison between the state-of-the-art UI generation tools
and our approach; (3) Performance of our CNN classifica-
tion; (4) Ability to evade detection by the state-of-the-art
anti-phishing techniques; (5) A human study to identify the
power and impact of our phapps.

Dataset. We randomly collect 50 Android apps (25 finan-
cial apps and 25 social apps) from the top 100 financial and
social categories from the Google Play Store, as the apps in
these two categories are usually security- and privacy-criti-
cal. All apps require users to login before use. These are the
most famous apps (e.g., Facebook, Twitter) with over
1,000,000+ installs, mainly originating from USA, China,
and European countries. We guarantee the representative-
ness of the selected original apps in terms of their number
of installs and representative categories. Given the screen-
shots of login pages and icons of these apps, we generate
the corresponding 50 phishing apps using our approach.
The dataset of (50 original apps and 50 phapps in total) is
used to conduct the following experiments. Besides the 50
financial apps and social apps used in our experiments, in
order to reduce the influence of randomness, we further
select 20 apps that were downloaded from different times
off the Google Play Store that also contain login pages to
validate the similarity of our results. From the comparison
of results, the corresponding generated UI pages of these 20
apps are also sufficiently similar (they achieve over 95

Fig. 6. Number of labeled GUI components.
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percent similarity on average in terms of mean absolute
error (MAE) and mean squared error (MSE)) and can be
used in the GUI-Squatting attack directly. More generated
phishing UI pages can be found on our website [10].

5.1 UI Similarity Comparison

One of our goals is to generate phishing UI pages resem-
bling the original. We compare the visual similarity of the
generated UI pages and the original UI pages (i.e.,

screenshots) collected from the 50 original apps listed in
Table 3. We use two widely-used image similarity met-
rics [53], i.e., mean absolute error and mean squared error,
to measure the image similarity pixel by pixel. MAE meas-
ures the average magnitude of differences between a predic-
tion and the actual observation. While MSE measures the
average of squared differences between them. On average,
our approach achieves 99 and 96 percent similarity in terms
of MAE and MSE (normalized to [0, 1]), respectively. We
detail the pixel-by-pixel similarity results (using MSE) of
each login UI page in column “Pixel Similarity” of Table 3.
“Visual Similarity” represents the similarity results via
human observation which will be discussed in Section 6.
“Generated time” represents the time cost on each phapp,
from an image to a compiled apk.

We can see that the pixel-by-pixel similarity of all the
50 apps is over 90 percent, the average visual similarity is
4.56, and only one app is considered dissimilar with a
score less than 4. The results indicate that our generated
apps are similar enough to masquerade as the original
ones. The average number of components on the login
page is 6, only one app (Parlor) has more than 10 interac-
tive components, indicating that attackers can easily cre-
ate a phishing login page image due to the small number
of components on the login pages. Our approach manages
to generate each phapp within 2.51 seconds on average,
with the highest time cost originating from building the
apks.

Remark 1. Our approach achieves 99 and 96 percent simi-
larity in terms of MAE and MSE, respectively, and the
average visual similarity is 4.56 based on the participates’
feedback from our human study. Our approach can gen-
erate a phishing app within 3 seconds.

5.2 Evaluation of the CNN Classifier

Baseline. In this experiment, apart from our method, we also
take some widely-used machine learning classification
models as baselines, including Logistic Regression (LR),
Linear Discriminant Analysis (LDA), K-nearest Neighbors
(KNN), Decision Tree (DT), Naive Bayes (NB) and Support
Vector Machine (SVM). Note that since traditional machine
learning algorithms need the hand-crafted features as the
input, we extract two kinds of features from each image.
First, for each image, we calculate its color histogram [18],
i.e., a representation of the distribution of color in an image.
Second, we extract Hu moments features [41] containing 6
different descriptors which capture the silhouette or outline
of objects inside the image. Then we concatenate color histo-
gram and Hu moments as the input features for all baseline
models.

Setup. Among 4,420 login-related images (Section 4.1), we
sample an even number of sub-images from each of the 6
types of UI component: CheckBox, ImageButton, EditText,
Button, TextView, Others (see Section 4.1 where it is speci-
fied). We then formulate the component classification into a
multi-class classification problem. To mitigate the impact of
unbalanced data [68], we take 7,900 sub-images for each
component i.e., only sampling 7,900 images if one compo-
nent has more than 7,900 images. Therefore, there are totally
47,400 (7900� 6) images for 6 different component types.

TABLE 3
Phapps Used in Experiments

App Name #ICs Pixel
Similarity

Visual
Similarity

Generated Time
(sec)

DBS IN 9 92.1% 4 2.2
CommBank 5 96.4% 5 1.7
DBS 8 94.8% 5 2.1
Alipay 8 96.8% 5 2.7
Gcash 5 96.2% 4.5 2.7
NetBank 6 94.3% 4 4.1
Reliant 6 93.4% 4.5 3.8
FAB 7 94.5% 4.5 2.4
First 7 94.5% 4 2.1
BankFirst 7 93.6% 5 5.0
AFCU 7 94.7% 4 2.1
GSB 7 92.9% 4 2.3
FSB 7 94.6% 4.5 1.8
ColumbiaBank 7 94.6% 4 2.9
Ulster 7 93.8% 4 2.6
Bridgewater 7 94.3% 4.5 2.0
RFCU 7 94.2% 4.5 3.6
CB 7 94.6% 4.5 3.1
Money 6 95.0% 5 2.3
Bred 3 94.9% 4.5 2.2
Oxigen 5 93.8% 5 1.8
Paga 6 96.1% 5 5.0
BankNordik 5 95.3% 4.5 3.0
Eik 5 95.4% 5 1.7
Nordoya 5 95.3% 4.5 1.8

Reddit 5 95.3% 4.5 2.1
Twitter 4 96.0% 5 2.0
VK 6 95.9% 4.5 2.4
Pinterest 4 93.8% 4.5 1.8
Askfm 9 91.8% 4 1.8
Badoo 4 95.3% 5 1.7
Bharat 8 95.8% 4.5 1.8
BNI 4 93.2% 4 3.2
Facebook 6 95.7% 5 5.0
Instagram 7 96.0% 4.5 2.2
MocoSpace 6 96.4% 4.5 2.2
MeetMe 7 95.1% 4.5 1.9
Path 4 96.5% 3.5 2.0
Weibo 7 97.0% 5 5.7
SKOUT 5 96.1% 4 2.2
Snapchat 5 98.3% 4.5 1.9
Nearby 5 96.5% 5 2.0
WeChat 7 97.1% 5 1.9
ADDA 5 93.2% 4.5 1.7
SayHi 8 94.8% 5 1.8
Vent 5 95.0% 4.5 1.8
LINE 7 95.4% 4.5 1.7
Kik 6 96.7% 4 3.9
Parlor 11 94.5% 4.5 1.8
Yapp 5 94.0% 5 1.9

Average 6 96.0% 4.56 2.51

The upper indicates 25 banking apps, the others are social apps. “#ICs” means
the number of interactive components.
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We partition this into an 80 percent split for training, the
remaining 20 percent for testing.

Results. Table 4 shows the accuracy of prediction for
all seven classification methods. We can see that our
model outperforms all baselines with 83.3 percent accu-
racy, which is 18 percent higher than that of the next
best model (Decision Tree 70.6 percent). The results are
reasonable, as often in computer vision applications,
deep learning outperforms classical machine learning
techniques due to reasons such as the abstraction of
latent features with suitable algorithms (e.g., CNN). We
further analyze the accuracy of our classification between
the different component types in Fig. 7. Checkbox and
ImageButton both have very high precision, larger than
0.9, with EditText also with a reasonably high precision
of 0.86. However, it seems that our model makes more
mistakes in classifying Button, TextView and Others
with precision below 0.8. We further check which com-
ponents were misclassified, and find that the most fre-
quent misclassification is that TextView were often
misclassified as Button. That is because some TextViews
are very similar to Buttons, In particular, TextViews with
short text on a certain background color (like blue)
which is also commonly used in Button. It is difficult to
discriminate them even for human by looking at the sin-
gle component without considering the context of the
component. For the 50 generated phapps in our experi-
ments, only 5 cases failed due to the wrong classification
of EditText as TextView, so we manually relabel these
components.

Remark 2. Our classification model outperforms all
machine learning baselines, with the accuracy (83.3 per-
cent) of our model 18 percent higher than that of the best
model among 6 baselines.

5.3 Comparison With State-of-the-Art Techniques

In this section, we choose two state-of-the-art end-to-end GUI
code generation tools, PIX2CODE [14] and UI2CODE [19], to com-
pare the similarity of the generated UI pages and the original
pages with the similarity of our generated UI pages. We use
UI2CODE and PIX2CODE to generate 50 corresponding UI pages.
Since PIX2CODE may fail to generate UI pages due to failures in
translation from UI pages to the intermediate language (i.e.,

DSL), and UI2CODE may fail to generate UI pages due to fail-
ures in generation from UI pages to an executable apk (i.e.,
build failure), they can only generate 20 and 35 of theUI pages,
respectively. We measure the similarity using MAE and MSE
based on the successfully generatedUI pages.

Fig. 8 shows the distribution of pixel-by-pixel similarity
on the successfully generated UI pages. Our approach out-
performs PIX2CODE and UI2CODE in terms of similarity of the
generated UIs, achieving over 96 percent pixel-to-pixel simi-
larity. One primary reason is that the two approaches aim to
reduce the burden on the GUI code development, but they
are not competent in generating an almost identical UI page
due to lack of realistic GUI-hierarchies of components and
containers of UI pages. Moreover, their approaches cannot
extract component attributes, such as coordinate positions,
colors and types. Similarity using MAE of UI2CODE and
PIX2CODE is mainly between 60-80 percent. As for the metric
of MSE, they are mainly between 40-70 percent. To under-
stand the significance of the similarity differences between
ours and the pages generated from UI2CODE and PIX2CODE,
we apply one-way ANOVA (analysis of variance) [6]
for multi-group comparison. We use the standard metric: a
¼ 0.05. It shows that the results are significant with a
p-value < 0:01.

Fig. 9 displays an example of the generatedUIs using PIX2-
CODE, UI2CODE, and our approach based on the same original
UI page. As observed in Figs. 9c and 9d, there is a substantial
difference between the original and generated UIs by PIX2-
CODE and UI2CODE with a human visual comparison. Note
that, as for PIX2CODE, some of the generated UI similaritymea-
sured by MAE and MSE is still high since some original UI
pages contained awhite backgroundwith login components,
as shown in Fig. 9a. Thus when measuring pixel-to-pixel
similarity, a large number of pixels are regarded as the same
or with high similarity, producing a large similarity value
that may overstate how visually similar they appear to a
human performing visual comparisons. As for UI2CODE, as
shown in Fig. 9d, the results are better than PIX2CODE;

TABLE 4
Performance Comparison Among Different Methods

Methods CNN LR LDA KNN DT NB SVM

Accuracy 83.3% 48.3% 47.7% 68.9% 70.6% 26.6% 36.8%

Fig. 7. Performance of our model in 6 different components.

Fig. 8. Pixel similarity comparisons with UI2CODE & PIX2CODE.

Fig. 9. Generated UI comparisons with UI2CODE and PIX2CODE.
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however, the generated UI pages by UI2CODE still have a big
visual difference compared to the original UI page.

Remark 3. Our new approach significantly outperforms
PIX2CODE and UI2CODE in terms of pixel-by-pixel similarity
of the generated UI pages. The comparison results are sig-
nificant with p-value < 0:01.

5.4 Bypassing Anti-Phishing Techniques

As shown in Table 5, we choose the most representative
mobile anti-phishing and malware detection techniques
with different detection strategies to demonstrate that our
generated phapps can bypass the state-of-the-art detection
approaches [44], [50], [51], [52], [59], [66], [72]. Since these
tools are not open source projects, we re-implemented the
core functions to conduct our experiments.

Anti-Phishing Techniques. DROIDEAGLE [66] relies on the
layout tree to generate layout hash values, and then com-
pares the layout hash values with their repository. Before
generating layout hash values, the tool prunes all leaves
in the layout tree before hashing, and generates a hash
value only for the layout skeleton. Fig. 10a shows the
original layout tree of Twitter. Attackers may carry out a
similarity attack by deleting the leaf node “CheckBox”,
resulting in Fig. 10b. However, the hierarchies of the two
trees are the same (i.e., LinearLayout, ScrollView, Linear-
Layout, and LinearLayout), leading to the same layout
hash values, thus Fig. 10b can be detected by DROIDEAGLE.
Fig. 10c shows the layout tree from our generated phapp,
which only has a root node and several leaf nodes. The
hierarchy of our layout tree is �Layout (e.g., LinearLayout
and RelativeLayout), which has a big difference with the
original hierarchy.

To demonstrate that our generated phapps can success-
fully bypass the detection of DROIDEAGLE, we first use APK-

TOOL to translate binary XML files to plain files, and re-
implement the procedure of extracting branch nodes (i.e.,
internal nodes) together with their attributes (e.g., width,
height, text). We then compare the extracted node sequence
of the original apps with that of the phapps, without further
computing their corresponding hash values. Obviously, the

hierarchies of the two trees are different, so DROIDEAGLE

does not work for phapps.
Malisa et al. [50] use visual similarity comparison on

the installed apps on the mobile device by taking screen-
shots, to detect spoofing apps which have visual differen-
ces (i.e., repositioning elements). They do not focus on the
detection of perfect copies like ours, and the similarity
comparison is not scalable to analyze a large number of
apps due to heavy runtime overhead on users’ devices.
Furthermore, the phapps prohibited screenshots to be
taken by third-party apps, such as the pre-installed apps
on the users’ devices; thus, this approach does not work
for our phapps.

Personalized security indicators rely on users to detect
phishing attack. When the user starts an app for the first
time, he is asked to choose a security indicator for the
app, he can also skip it if he does not want to set it up.
After that, whenever the app starts, it authenticates itself
by showing the security indicator. Users can distinguish
benign apps from phishing apps. However, previous work
identified that users tend to ignore personalized security
indicators [63]. Moreover, many research communities
have proved that it is an ineffective phishing detection
technique [16]. However, among the 50 selected financial
and social apps in our experiments, we did not find any of
these apps using personalized security indicators. Marforio
et al. [51], [52] revisited personalized security indicators to
detect mobile phishing attacks. However, if we conduct a
personalized phishing attack, our generated UI can capture
the security indicators and will show the correct indicators
to users to bypass the detection.

WINDOWGUARD [59] uses the integrity of Android Win-
dow Integrity (AWI) to detect phishing attacks efficiently.
However, phapps do not use window overlaying or task
hijacking when running on mobile devices. Therefore, AWI
has no effect on phapps, and WINDOWGUARD also does not
work for phapps.

Malware Detection Techniques. Signature, behavior, and
dynamic-based detection always rely on the declaration of
resource permissions, API calls, system calls, andpre-defined

TABLE 5
Detection Results of Multiple Anti-Phishing Techniques for Different Mobile Phishing Attacks

�: Fully detect º�: Partially detect �: Unable to detect

Fig. 10. Layout comparisons.

CHEN ET AL.: GUI-SQUATTING ATTACK: AUTOMATED GENERATION OF ANDROID PHISHING APPS 2561

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:32:35 UTC from IEEE Xplore.  Restrictions apply. 



rules to detect Android malware with big data [47], [67], [75].
Our generated phapps only use INTERNET permission, the
most commonly-used permission. Meanwhile, Socket, and
HTTP/HTTPs communications are very normal ways to
communicate between the client and the server. Thus phapps
can bypass such techniques. For learnined techniques, we
trained a machine learning based classifier on a malicious
dataset from DREBIN [13] using Support Vector Machine. For
the features, we replicate their defined feature sets (e.g.,
requested permissions, hardware components, suspicious
API calls). We use the trained SVM classifier to classify our
50 phapps. The result we obtained demonstrates that the
classifier does not work for phapps. We suspect there are
not enough malicious features that can be extracted from
phapps.

VIRUSTOTAL contains 61 anti-virus engines, e.g., MCAFEE

and KASPERSKY. When we upload our generated phapps,
none of the anti-virus engines flag our phapps as malicious.
Therefore, our generated phapps are also able to bypass the
state-of-the-art Android malware detection techniques.

Traffic Analysis. Traffic analysis [28], [76] can also be used
to analyze abnormal behaviors when there is communica-
tion between the client (phapp) and server. If phapp only
contains the code of credential collection, it would only pro-
duce one directional traffic from the client to the server,
which would be easily detected by traffic analysis because
there is no response and traffic being sent back to the client
side (phapp). To bypass traffic analysis, we implement
SSL/TLS authentication and server identity verification via
HTTPS for each phapp, making the communication behav-
ior of phapps closer to normal apps. In fact, according to the
recent work [23], [24], a number of normal apps do not cor-
rectly implement the server verification part, while our gen-
erated phapps implement correct communication between
the client and the server. Therefore, even if the traffic analy-
sis is employed to detect the abnormal behaviors of our
phapps, phapps are able to bypass the detection.

Activity Transition Analysis. Activity transition represents
the interaction between different activities. If phapp only
contains one activity, this approach of detection will be able
to identify it by leveraging activity transition graphs (ATG).
For example, defenders can use the existing inter-compo-
nent communication analysis tools (e.g., IC3 [54] and Story-
Droid [22]) to check the activity relations. To evade the
detection of them, in the deception code generation phase,
we implement several common and widely-used activities
into phapp, and also build up relations between the login
activity and other activities. In the evaluation, we use IC3 to
extract the activity transition graphs and compare them
with the transition results of normal apps. For example,
phapps have the normal relations (e.g., LoginActivi-
ty!RegistrationActivity, LoginActivity!MainActivity,
MainActivity!SettingActivity). We find that the relation of
phapps is similar to normal apps, resulting in successfully
evading detection by activity transition analysis.

Remark 4. Our generated phishing apps (phapps) can
bypass the state-of-the-art anti-phishing techniques,
Android malware detection techniques, industrial virus
engines, traffic analysis, and activity transition analysis
successfully.

6 HUMAN STUDIES

In Section 5.4, we have demonstrated that our generated
phapps can bypass the state-of-the-art detection tools.
Another important point of the phishing attack is that the
attacker is able to obtain users’ information without altering
the user. In this section, we demonstrate that these phapps
can attack users and obtain their credentials in real scenarios.
Since the generated phapps require interaction with users to
obtain their input data (i.e., username, password), we design
and conduct a human study to evaluate the practicality of the
generated phishing apps. Our goals are to check:

� if we can obtain user credentials from the generated
phapps without users’ awareness.

� if users can differentiate the generated phapps from
their original apps based on their login pages.

6.1 Settings of Human Studies

Dataset of Human Study.We use our generated 50 phapps for
our human study. The 100 apps (50 original apps and 50
generated apps) are randomly installed on 20 mobile devi-
ces (e.g., Nexus 5 and Nexus 5X with Android 4.4) with 8
apps on each device, among which 4 apps are phapps (with
2 financial apps and 2 social apps) and the other 4 are the
original apps (still with 2 financial apps and 2 social apps).

Participant Recruitment.We recruit 20 people from our uni-
versity to participate in the experiment via emails and word-
of-mouth. The recruited participants have a variety of occupa-
tions, ranging from doctoral students, post-doctoral research-
ers to administrative staff, including app developers,
computer vision researchers, etc. They come from different
countries, such as the US, China, Singapore, and European
countries (i.e., Spain and Ireland). The male-to-female ratio of
participants is 7:3. All of the participants have used Android
OS before, and 84.6 percent of them have used Android for
more than one year. The participants were compensated with
a $10 shopping coupon for their participation in the study.

Experiment Procedures. The experiment begins with a brief
introduction. We explain to the users and walk them
through all of the features that we want them to use. To bet-
ter mimic the real world scenario, instead of telling users
the fact that there are phapps inside and creating unneces-
sary attention, we only provide a list of tasks for users to
accomplish while they are exploring the provided apps, fol-
lowed by a questionnaire. Each participant is asked to work
on the 8 apps randomly and explore them on the assigned
Android device. We also asked them to register each corre-
sponding normal apps before our human study and get
familiar with the basic functionalities. During the experi-
ment, all apps are used without any interventions or discus-
sions among the participants.

There are five main tasks that participants were asked to
complete. Participants need to (1) log in the apps using their
credentials; (2) explore functionalities and they can termi-
nate the exploration at any point of the process; (3) give a
similarity score between the login pages from phishing
apps and the corresponding original ones; (4) distinguish if
the current page is from a phapp; (5) give a confidence score
about the app related to the deception response given by
the phapp.
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After the experiments, participants are asked to complete
a questionnaire in Table 6:

T1&T2. We first ask each participant the overall opinions
about each app including the UI design (Q1). Second, they
are asked if they notice any weirdness and related details to
see if they spot the phapps (Q2).

T3. We then provide login pages from phishing apps and
the corresponding original ones of 8 apps to each user to let
them score the similarity and point out differences (if any)
between the two kinds of pages (Q3). As there are 20 partici-
pants, each app in our dataset has been checked by two
users to avoid bias.

T4. After they finish answering Q3, we randomly sample
8 different apps (half original, half phishing). We explicitly
tell them that there are phapps inside and ask them to check
which ones are phapps by only looking at the login pages,
and rate their confidence of their choices (Q4) [50].

T5. We then randomly provide 10 response pages from
10 phishing apps after clicking the “login” button, and each
of them displays a response of that in Table 2. We ask them
for the confidence score about the app regarded as a phish-
ing app (Q5).

Note that all questions have to be answered in the order,
listed in Table 6, to stimulate the real environment, where
information about the phapps would be unknown to a
phishing victim. Different questions are placed to different
pages in the survey, so the participants do not know the
next questions until they finish answering the current ques-
tions. We do not tell participants that there are phapps
before Q3, and want to see if they can spot the phapps or
any abnormalities by themselves.

6.2 Results of Human Studies

It takes about 35 minutes for each participant to finish the
human study, including 16 minutes (2 minutes each) for
using the apps, 10 minutes for filling the questions, and 10
minutes to check the image similarity. For all 80 phapps in

the experiment, we successfully receive users’ usernames
and passwords on our hacking server (Nexus 5X, Android
7.1.1). We show the human study results as follows.

Answer to Q1. Most participants hold neutral views on
design of UI pages, and there is no significant difference of
satisfaction scores of UI design between the original apps
(3.85) and phapps (3.47). We interviewed the participants
who are not satisfied with the UI design of the whole app,
and asked them the reasons for that. Their answers are
mainly about two respects: (1) The UI design is too compact,
e.g., setting options or other login options (e.g., login with
facebook) appear in the page. (2) The UI design is too sim-
ple, e.g., only two inputs (username, password) and a
“login” button are shown in the login page. But according
to our observation, their satisfaction is influenced by
whether the app ran well. Those phapps with response mes-
sages showing problems about the apps seemed to receive
lower satisfaction scores.

Answer toQ2.Among all 160 apps, participants found that 34
of them exhibit some kind of weirdness, 27 of them belong to
phapps in our experiments, indicating that users cannot notice
anyweirdness for amajority of phapps (53/80 = 66.25 percent).
We further asked participants what kinds of weirdness they
found, and the results show that they regardmost of theweird-
ness (24/27 = 88.9 percent) as functional problems with com-
plaints about “Crash”, “Server failed”, “Network unavailable”,
etc. They regard other weirdness (3/27 = 11.1 percent) as UI
problems, e.g., lack of features of remembering username with
auto-filling in the EditText bar. But none of them raised con-
cerns that thiswas a phishing app.

Answer toQ3. The results can be seen in the column “Visual
Similarity” of Table 3 and the average score is 4.56. As users
can only select a score between 1 to 5, it means that most users
select 5, i.e., two screenshots are almost perfectly the same.
The visual similarity results correlate with our observations
given by pixel similarity through computing MSE. Both
results verify the quality of the generated login pages.

Answer to Q4. Different from other questions, we now
inform participants that there are phapps in this experiment
but without telling which apps are phapps. Participants
then determine if the app is a phapp or an original app by
looking at their login pages, and mark their confidence. The
results can be seen in Table 7, where TP represents the num-
ber of phapps which are correctly determined, and FP rep-
resents the number of original apps which are wrongly
determined as phishing. TN represents the number of origi-
nal apps which are correctly determined, and FP represents
the number of phapps which are wrongly determined as
benign. Although the number of phapps and the original
apps are the same (80 in each) in our experiments, partici-
pants regard 50 of them as phapps and the other 110 of
them as original apps. In addition, it seems that users have
higher confidence in their selection of original apps (aver-
age of TN and FN: 3.945) than that of phapps (average of TP
and FP: 3.655).

Among 50 login pages which were described as phapps
by the participants, 26 (52 percent) of them are right, while
24 (48 percent) of them are wrong. Both TP and FP have
similar confidence scores. The probability of correct predic-
tion is almost the same to random guess (50 percent for a
binary guess). Similar observations also apply to TN and

TABLE 6
The Questions for Participants to Answer

TABLE 7
The Results of Phishing App Identification

Metrics Number Confidence Scores

TP 26 3.73
FP 24 3.58

TN 56 3.96
FN 54 3.93
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FN. These results further demonstrate the effectiveness of
our method for phapp generation, as users cannot accu-
rately spot phapps with special attention given after being
told that phapps exist.

Answer to Q5. There are 10 kinds of different responses
as listed in Table 2. We try to explore which of them are
more likely to invoke alarm from an user. The results are
shown in Fig. 11. By looking at the mean confidence of
different responses, we can see that users are more con-
cerned about “Update Google service”, “Update app”,
and “Server failed”. As they are all about downloads, it
seems that users are more sensitive to Internet interaction
and think that it may bring security risks to their apps.
Considering both the mean and lowest confidence values,
we find that “Invalid inputs”, “Slow response”, and
“Keep loading” cause fewer concerns. Therefore, when
applying our approach in practice, it is better to adopt
these responses inside the generated apps. According to
the results, these collected response types from real apps
achieve different reliability when used in phishing apps.
The reason for such random assignment of responses is to
defend against the pattern-based detection approaches.
Moreover, before the response is shown, the user creden-
tials have already been successfully stolen.

Remark 5. We summarized the key findings based on partic-
ipants’ feedback from the human study. Our phapps suc-
cessfully masquerade as original apps without raising
users’ special attention in information leakage. Even in
cases when users did raise concerns, we were able to mis-
lead them to believe it was a functional problems as
opposed to a security or privacy threat. The login pages of
phapps are so similar to the ones of original apps that par-
ticipants cannot distinguish between them. Responses like
“Keep loading” and “Slow response” are more effective in
placating users’ security concerns than other responses like
“UpdateGoogle service” and “Update app.”

7 DISCUSSION

Limitations of our Approach. (1) Our approach does not fully
handle the font family/color of the text extracted from the
EditText component, causing a small visual difference if
the app uses a special font family. Fortunately, according to
the results of the human study, users are insensitive of such
differences. (2) Since we generate components with normal
attributes, such as a plain background of EditTexts, if the
original app uses a colorful image (e.g., photos) as the

background of EditTexts, we cannot generate a perfect copy
of its UI page. (3) As for targeted UI pages with smaller res-
olutions, we need to scale the component to an equivalent
size to deploy the same phapp on devices with larger
resolutions.

Deception Code Generation. As for deception code, we gen-
erate responses for each interactive component such as
“Button” and “TextView”with component listeners. Accord-
ing to the comprehensive experiments, we notice that page
confusion plays a more important role than logic deception in
GUI-squatting attacks. Specifically, in the human study,
there is only one person (1/20) who clicked other interactive
components first before directly starting the login process.
Nevertheless, receiving such responses after clicking other
interactive components, they still regarded it as a functional
issue (logic deception), and then proceeded to the login pro-
cess. In other words, phapps are able to extract the users’ cre-
dentials because of the high page similarity (page confusion)
and the realistic responses encoded the deception code
(logic deception).

Moreover, compared with repackaging and cloning tech-
niques for phishing attacks, our approach generates mobile
phishing apps without any domain-knowledge, and there is
no other inputs required except the login page(s) of an origi-
nal app. Such a light-weight input enables us to generate a
phishing app with less complexity but with more reliability
of the login pages; thus the deception logic aims to generate
the corresponding responses for the interactive components
in order to convince users when logging in. There are four
main problems to use the original app in addition to login-
related pages as inputs when generating phishing apps. (1)
First, the original apps are often closed-source, the source
code and resource files are unavailable. Even if we are able
to obtain it by reverse engineering the original apk file, the
process is still affected by the packing and obfuscation tech-
niques as we mentioned in Section 1. (2) Even if the source
code of the app is available, the functionalities associated
with the components can also be deleted by the technique
in [42]. It is difficult to extract the functionalities associated
with the components from the source code since many
dependencies of the logic code, including third-party librar-
ies and resource files, need to be considered. (3) More
sophisticated logic code means more UI pages involvement
and maintenance. (4) It is a time-consuming task to reverse
engineer and extract functionalities associated with the
components.

Mitigation of GUI-Squatting Attack. We introduce the fol-
lowing methods to mitigate our generated phapps. (1) Static
analysis of back-end code. Due to lack of complete logic code
like original apps, phapps may be distinguished from origi-
nal apps through an in-depth static analysis. Specifically, in
this work, apart from the login activity, we integrate some
widely-used activities and also build up the relations
between them. However, the whole logic is still missing. If
defenders can generate the whole picture of phapps at a
high level, the general feature or the detectors based on the
imbalanced structure of two code branches [55] will help to
identify phapps. (2) Taint analysis. Although the technique
is able to track user credentials from source to sinks (i.e.,
server URL), they need to determine whether the remote
URL is malicious. For example, one app may contain several

Fig. 11. The confidence of treating apps as phishing apps according to
different responses.
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URLs linking to other websites apart from the official web-
site related to this app, and it is difficult to determine
whether the unofficial URLs are malicious or not. It is also
difficult to maintain a comprehensive black-list for compari-
son or have applications nominate white-listed destinations
for authentication. (3) Relying on the Android app market
assessment. Both the official and third-party Android mar-
kets should first analyze similar apps with same or similar
UI pages and app names, and further identify whether it is
a phishing one. But it is an ineffective way since it relies on
a large-scale reference dataset.

8 RELATED WORK

Web Phishing.Gupta et al. [38] summarized that web phishing
attacks have two traditional strategies: spoofed emails and
fakewebsites. Spoofed emails induce users to click links in the
email and redirect to amaliciouswebsite fromuntrusted serv-
ers to extract victims’ information. Numerous approaches
have been proposed to filter out phishing emails. Fette et al.
[34] utilized machine learning to classify the spoofed emails
with a high accuracy. CANTINA [77] proposed a content-
based approach to detect phishing websites, based on the TF-
IDF information retrieval algorithm. Pan et al. [56] examined
anomalies in web pages (e.g., the discrepancy between a
website’s identity) to detect phishing web pages. Fu et al. [36]
and Liu et al. [48] used visual similarity comparison to distin-
guish phishingweb pages. DOMAntiPhish [62] leveraged lay-
out similarity information to distinguish malicious and
benign web pages. Ma et al. [49] trained a predictive classifier
based on the web URLs to identify phishing URLs. However,
since attributes inmobile apps are different from those inweb
pages, these detection techniques are not applicable to mobile
systems. In this paper, we focus on phishing attacks under
mobile environments.

Mobile Phishing. App-based phishing attack is a major
problem on mobile devices [31], [33], [37], [70], and phishing
apps are one of the most popular types in malicious
apps [25], [26], [27], [30], [32], [69]. Repackaged apps are the
most useful technique to perform similarity attacks (spoof-
ing attacks) for mobile phishing [15]. RESDROID [64] leverage
new features extracted from core resources and source code
to detect repackaged apps; however, phapps do not rely on
repackaging techniques. Sun et al. [66] introduced that
attackers can analyze the GUI code of the original apps,
modify the corresponding layout code, and then add logical
code to manipulate the original logic. However, developers
can obfuscate or pack their apps to avoid repackaging mal-
ware attacks (e.g., repackaging phishing attacks). Mean-
while, this process heavily relies on the attacker’s
knowledge about the original app code. Bianchi et al. [15]
extracted API call sequences via static code analysis to
detect phishing apps, however, static analysis is limited to
known attack vectors, and many similarity attacks don’t
require specific API calls. DROIDEAGLE [66] used the similar-
ity of layout tree between official apps and third-party apps
to detect mobile phishing apps. Marforio et al. [51], [52] lev-
eraged personalized security indicators as a mechanism to
avoid mobile phishing attacks.

MOBIFISH (APPFISH) [73], [74] used OCR techniques to
extract texts from the screenshot of a login interface. It

identifies the identity from the extracted texts, and com-
pares it with the actual identity from a remote server of
mobile apps. If two identities are different, there is a warn-
ing presented to users. However, it has two shortcomings:
(1) Many login pages do not contain app identities; (2) A
white-list of legitimate domains are required, in addition to
a database of suspicious applications that needs to first be
constructed and continuously updated.

In this paper, we propose GUI-Squatting attacks; how-
ever, code obfuscations and packs will not affect the capa-
bility of our approach, and knowledge of the original app
code is not essential. Moreover, our approach can bypass
the state-of-the-art repackaging or clone detection techni-
ques [20]. In addition to similarity attacks, window overlay
and task hijacking are common mechanisms to execute
mobile phishing attacks [21], [60], [61]. Although we do not
focus on these two methods, our approach can also help
generate the similar UI pages that can be leveraged by these
two attacks. However, these two methods can be detected
and mitigated by many cutting-edge detection techni-
ques [15], [59], [60]. A recent defense solution has been pro-
posed in [15] based on GUI-related APIs/permissions.
WINDOWGUARD proposed a security model, Android Win-
dow Integrity [59], to protect the system against all GUI
attacks, including window overlay and task hijacking. But
our generated phapps are able to bypass all of these detec-
tion techniques successfully.

9 CONCLUSION

In this paper, we propose a novel approach to automatically
generate platform-independent phishing apps, to enable a
powerful and large-scale phishing attack (GUI-Squatting
attack) on different categories of apps within 3 seconds. Our
human study demonstrates the effectiveness of our gener-
ated phishing apps which successfully steal users’ informa-
tion imperceptibly. Additionally, the generated apps can
successfully bypass the state-of-the-art detection techni-
ques. Finally, by discussing methods to mitigate our gener-
ated apps, we thereby assist security defenders to further
explore and understand the characteristics of new mobile
phishing apps.
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